Interesting Examples of Computational Physics
  • Welcome to the blog of Computational Physics at the IFM!
  • Dynamical Systems
    • The simple pendulum
    • The spherical pendulum
  • The wave equation
    • The simple discretization
    • Boundary conditions
    • Interfaces between mediums
    • Knots on ropes
    • 2D wave equation
  • Time dependent Schrödinger equation
    • The Crank-Nicolson method
    • Free wave packet
    • Quantum Tunneling
    • Harmonic Oscillator
    • Forced Harmonic Oscillator
    • 2D Harmonic Oscillator
    • Wave-particle duality
Powered by GitBook
On this page
  1. Time dependent Schrödinger equation

2D Harmonic Oscillator

PreviousForced Harmonic OscillatorNextWave-particle duality

Last updated 9 months ago

Numerical Domain
(x,y) in [-1,1]x[-1,1]
Nx = Ny = 200
CFL = 0.125
Nt = 12800

Initial conditions for the quasi-classical state
omega = 10.0*pi
V = 0.5*omega**2*(x**2+y**2)
k0 = omega*0.2d0
psi = (omega/pi)**0.5* exp(-0.5*omega*((x+0.2)**2+y**2)) * exp(cmplx(0.0d0,k0*y))

Initial conditions for the elliptic trajectory
omega = 10.0*pi
V = 0.5*omega**2*(x**2+y**2)
k0 = omega*0.2d0
psi = (omega/pi)**0.5* exp(-1.0*omega*((x+0.4)**2+y**2)) * exp(cmplx(0.0d0,k0*(cos(45.0*pi/180.0)*x+sin(45.0*pi/180.0)*y)))